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This paper presents an error analysis of numerical algorithms for solving the con- 
vective continuity equation using flux-corrected transport (FCT) techniques. The 
nature of numerical errors in Eulerian finite-difference solutions to the continuity 
equation is analyzed. The properties and intrinsic errors of an “optimal” algorithm 
are discussed and a flux-corrected form of such an algorithm is demonstrated for a 
restricted class of problems. This optimal FCT algorithm is applied to a model test 
problem and the error is monitored for comparison with more generally applicable 
algorithms. Several improved FCT algorithms are developed and judged against both 
standard flux-uncorrected transport algorithms and the optimal algorithm. These im- 
proved FCT algorithms are found to be four to eight times more accurate than standard 
non-FCT algorithms, nearly twice as accurate as the original SHASTA FCT algorithm, 
and approach the accuracy of the optimal algorithm. 

I. INTRODUCTION 

This paper presents an analysis of numerical errors in the solution of the con- 
vective continuity equation. Emphasis is placed on developing improved flux- 
corrected transport algorithms and on evaluating these and other algorithms 
relative to the performance of an “optimal” algorithm on simple test problems. 
Flux-corrected transport (FCT) is a technique for constructing positivity-preserving 
finite-difference algorithms [l-4] to solve generalized continuity equations for 
problems involving strong shocks or sharp shear-layer transitions where the charac- 
teristic scale lengths for the desired solution are as small as or smaller than the 
computational zone size. In such regions it is relatively meaningless to approximate 
a generalized continuity equation 

(f?p/at) + v . Vp = -pV . v + s(x, t, p, etc.) (1) 

by standard linear Taylor series or finite-difference approaches because the error 
terms are the same size as the solution sought. 
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The FCT technique achieves its success by replacing strict asymptotic ordering 
expansions with the much more flexible physical fact that positivity must be 
maintained in the vicinity of strong gradients. Thus, flux-correction, when applied 
to a convected conserved quantity such as the mass density in hydrodynamics, 
is sufficient to guarantee that an everywhere nonnegative density profile remains 
nonnegative even near large gradients or in regions of strong evacuation. This 
important additional physical property is folded into the FCT algorithms through 
the flux-correction formula introduced in [I], hereafter referred to as FCT/I. 
Some generalizations of the FCT technique are introduced in [4], referred to 
as FCT/II, which extends the techniques to simple curvilinear geometries and 
basic transport algorithms. The present paper is primarily concerned with 
minimizing the remaining numerical error to develop improved FCT algorithms. 

An FCT algorithm for solving Eq. (1) on a finite-difference grid consists con- 
ceptually of four sequential steps to advance the vector of grid density values 
{pj(t)} by one timestep to {p$(t + at)}. The first step consists of a highly diffusive 
approximation to the continuity equation: 

pj7j(t + st> = p&) + St pi(t + a@) 

+ {%+dfi+dt) - dOI - %-(1/2dP~(0 - f~-I(Ol). (2) 

Here, pj signifies a conservative finite-difference approximation to Eq. (1) and the 
last term is a strong added diffusion that, by itself, is an error with respect 
to Eq. (1). While pi may contain errors of other types, we assume that all of the 
numerical error that can be classed as a simple three-point diffusion is included in 
the third term. The second step consists of computing some provisional fluxes 
preparatory to removing the three-point diffusive error term shown in Eq. (2). 
These fluxes, for explicit FCT, are 

4”i+(1/2, = %+dI?j+dt + w - ixt + at)]. (3) 

The fluxes are then corrected according to the following simple prescription in a 
third step: 

The antidifision of {&} using the corrected JEuxes {q$+cl,z} should generate no 
new maxima or minima in the solution, nor should it accentuate already existing 
extrema. 

Equation (4) below is one particular mathematical formulation of this prescrip- 
tion and forms the basis of the FCT technique (FCT/I). 
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where Jj+(1,2) = pj,Jt + St) - pj(t + St). The fourth step performs the anti- 
diffusion, 

I4 + w = P& + w - 4j+(1/2) + hlid - (5) 

Equation (5) removes that part of the diffusive error in Eq. (2) that does not lead 
to extraneous new maxima and minima in the solution. 

Although new maxima and minima that would be caused by the corrective 
antidiffusive step are suppressed, physically valid new extrema arising from 
the pj term in Eq. (2) appear naturally in the solution, because the change from 
b%j3) to ho + w> is checked for new extrema, not the change from {pj(t)} to 
{pj(t + at)}. The numerically induced new extrema that appear near strong 
gradients in non-FCT algorithms arise from two sources of error, dispersion at 
short wavelengths and intrinsic Gibbs phenomena brought on by the finite grid. 
FCT rectifies the most odious ramifications of these two types of error by leaving 
behind in selected regions a diffusive smoothing error, which is equal and opposite 
to the dispersive and Gibbs errors, and therefore cancels them. Near maxima 
or minima in a profile FCT leaves a residual diffusion that eventually replaces 
a one-point maximum or minimum with a three-point wide plateau (FCT/II). 
This plateau is impervious to further effect by FCT and is called “clipping.” It 
is the price paid for the extraordinary stability and accuracy of FCT algorithms 
near strong gradients. 

An interesting side effect of FCT diffusion and antidiffusion, as noted for the 
original FCT algorithm Shasta [l, 21, is the roughly fourfold reduction of 
dispersion in the basic finite-difference approximation itself. Even in the absence 
of the flux-correction formula Eq. (4), the process of strongly diffusing and then 
antidiffusing the solution greatly reduces the numerical errors. We will exploit 
this fact systematically. 

Generalizations of the FCT technique to more complicated continuity-like 
equations, to multidimensions, to non-Cartesian geometries, and to complicated 
realistic magnetohydrodynamic and turbulence problems have been accomplished 
since the original document FCT/I was submitted for publication. Many of these 
are covered in [3] and the second paper in this series, FCT/II. Some of the 
current applications of the original FCT presentation and recent generalizations 
are discussed by Anderson [5], Book [6, 71, Boris [8, 91, Gardner [lo], Liewer 
[ll, 121 and Freeman [13]. 

Many different approaches have been tried to improve numerical solutions of 
continuity equations. These include characteristic methods [14], characteristic 
particle methods [ 1.51, finite element methods [ 161, splines [ 171, and finite-difference 
methods [18]. Characteristic and spectral methods give superb results in many 
cases, but lack general applicability. Characteristic methods, for example, usually 
break down when a real physical diffusion term is present, and spectral methods 
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can become expensive when complicated nonlinearities are present. Characteristic 
particle methods get over the nonlinear and diffusion-term stumbling blocks 
nicely, but run into massive amounts of computer time when the number of 
“particles” has to be made large to reduce fluctuations. Finite-element and spline 
methods also give excellent results where they are applicable, but their complexity 
and computational cost are often prohibitively high. Thus, attention naturally 
turns time after time to the simple, generally applicable, computationally efficient 
finite-difference formulations. 

Our interest is centered primarily on Eulerian finite-difference solutions to Eq. (1) 
using a discrete grid of values to represent the mathematically continuous functions 
p, v, and s. The Eulerian restriction is certainly not necessary to FCT ([4] and [8] 
describe Lagrangian FCT algorithms), but in many practical circumstances, the 
Eulerian approach is the simplest. In any case, Lagrangian techniques still have 
unavoidable Eulerian aspects. In ideal hydrodynamics, a grid moving with velocity 
v ensures that no mass crosses its cell boundaries, but the momentum and energy 
of the flow cross the Lagrangian boundaries. As is well known, the ideal hydro- 
dynamic energy equation, 

aE/at = -V . [(E + P)v], (6) 

actually has associated with it a Lagrangian velocity 

v* = ((E + WE) v, (7) 

which is parallel to and somewhat larger than v. No energy is transported across 
cell boundaries moving at v*. Of course, if the grid moves at v*, so that the energy 
is Lagrangian, the density cannot be Lagrangian, since v* differs from v whenever 
P > 0. In other words, convective flows across cell boundaries present almost 
as big a problem for Lagrangian finite-difference algorithms as for Eulerian. 

We concentrate primarily on the one-dimensional incompressible continuity 
equation, often called the advective equation, for p(x, t) with a given constant 
velocity on a uniform spatial grid. Numerical algorithms for this problem can be 
analyzed theoretically in great detail. Fourier analysis of the constant-velocity 
version of Eq. (1) is introduced in Section II, as a mechanism for cataloguing 
three types of numerical error that can be identified. In Section II, we also discuss 
briefly a model test problem for the one-dimensional incompressible continuity 
equation. This square-wave problem is used to compare various algorithms in 
a fashion consistent with previous reports. 

Section III considers the properties of an optimal algorithm for the model test 
problem based on Fourier-transforming the incompressible (constant-velocity) 
continuity equation. This algorithm, while quite restricted in its applicability, 
suffers no amplitude or dispersion errors. Thus, it forms an ideal method of 
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exploring the irreducible finite-interval Gibbs error relative to more generally 
applicable algorithms. 

Having isolated and displayed an essentially irreducible error, we undertake 
a treatment of amplitude errors in Section IV. We develop several zero-residual- 
diffusion algorithms appropriate for use with FCT whose linear amplification 
factors are identically unity for all Fourier harmonics. These algorithms help to 
clarify the relationship between antidilfusion and amplitude errors, but do not 
reduce the error level from that found in the original explicit Shasta algorithm 
[l-3]. This result suggests that phase errors due to dispersion account for the 
dominant inaccuracies in finite-difference algorithms. 

Section V presents several phase-improved generally applicable FCT algorithms, 
which show that, even in the presence of nonzero residual diffusion, overall errors 
can be made almost as small as for the optimal algorithm of Section III. Phase 
improvement is achieved by adjusting the level of diffusion and antidiffusion so 
that phase errors are reduced in the overall algorithm from second order in k 6x, 
to fourth order. Two extremely good algorithms are derived and compared. 

Section VI briefly extends the consideration of FCT algorithms to include 
some aspects of linear and nonlinear stability. 

Section VII presents a brief summary and discusses the following six conclusions, 
the main results of this paper. 

1. An optimal algorithm is not perfect because of essentially irreducible 
finite-interval Gibbs effects. 

2. The optimal Fourier FCT algorithm actually can be approached quite 
closely by useable finite-difference FCT algorithms. 

3. Modest phase errors are generally more destructive than modest amplitude 
errors because the former can be secular. 

4. Improved phase-error FCT algorithms with modest but nonzero residual 
diffusion appear to be quite sufficient. 

5. The good FCT algorithms are about an order of magnitude more accurate 
than more-or-less standard non-FCT algorithms. 

6. Flux-corrected transport seems to strongly repress or eliminate the non- 
linear instabilities that result in grid-separation errors in many long runs using 
standard algorithms. 

For purposes of clarity and continuity in exposition, the text of this paper 
consists mostly of discussion of the concepts of optimal algorithms and phase 
and amplitude improvements. As far as possible, the numerical analysis on which 
the paper rests is kept to the background, in the form of an Appendix, which may 
be omitted in a first reading and referred to as necessary. 
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II. ERRORS IN SOLVING THE CONTINUITY EQUATION BY FINITE DIFFERENCE 

We now consider the types of error inherent in numerical solutions of the con- 
tinuity equation (l), which can be written in conservative form without sources as 

+/at = -v . (pv). G-9 

Here, p(x, t) is the density function, which in general, depends on position and 
time, and V(X, t) is a velocity flow field for that density. For our analysis, we 
consider the one-dimensional version of Eq. (8) with v(x, t) a given constant V, . 
One then knows the analytic solution of Eq. (8), 

P(X, 0 = P(X - Vat, 9, 

given the initial profile p(x, 0). 

(9) 

We assume that our knowledge of p(x, 0) is itself limited, extending only to the 
initial values of p on a set of N discrete gridpoints with separation 6x. These values 
we denote as {pjo} (0 < j < N - l), where pNo = poo. Furthermore, we only 
expect our finite-difference algorithms to yield approximations to p(x, n at) at 
discrete times t = 0, at, 2 6t ,... on the same discrete spatial grid; these approximate 
solutions of Eq. (8) we denote by {pi”}. 

Since Eq. (8) is linear with constant coefficients under the above assumptions 
and has periodic boundary conditions, one can Fourier analyze p(x, t) in space: 

p(x, t) = f pk(t) e(2rikz’L), 
k=-cc 

where L z N 6x is the length of the system. The infinite discrete set of harmonic 
coefficients {fib(t)} can be found as an integral over the continuous density function 
P(X, 07 

p^k(t) = (l/L) s,” &‘, t) &2?rikz”L) dx’, (11) 

where it is clear that bk(t) = b-k(t) when p(x, t) is real. This Fourier analysis 
discretizes simply as follows: 

where 

N/2 

Pjn = c 
pnkne(2nikic3xiL), 

w 
k=(-N/2)+1 

N-l 
p^kn _ & C ,,jne(-2niki8xlL)a 

3=0 
(13) 

From the reality of (pi”}, we get all the negative k harmonics by conjugacy. 
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The advantage of Fourier analysis lies in the particularly simple form of the 
closed solution, Eq. (9), in k-space. 

(14) 

The Fourier harmonics of p(x, t) advance uniformly in phase with an unchanging 
amplitude for all time. Furthermore, since the equation being studied is linear, it 
is sufficient to know the behavior of each harmonic independently; a complicated 
profile can be built up by superposition. In terms of the finite discrete harmonics 
of Eq. (13) which we assume to represent a numerical approximation to p(x, t) 
on a grid hereafter, we note that the time-discretized analog to Eq. (14), 

$k” = ~kDe(2nikYon8tlL), (1% 

would only be true if the algorithm were optimal. 
In general, Eq. (15) does not hold for a finite-difference algorithm, so it is 

valuable to catalogue the types of numerical error that can occur. The first such 
error, one that dominates many numerical solutions of the continuity equation 
that must display a nonnegative solution, is damping. Numerical diffusion is a 
particular form of harmonic damping that arises from often unintended approxi- 
mations to the second-order diffusion equation, 

appt = D(a2ppx2), (16) 

such as the simple three-point difference formula, 

Pil = pjo + (D st/sx2)[p;+l - 2pjo + &]. (17) 

The measure of damping for each algorithm is a quantity called the amplification 
factor, 

Ak = I p”s+l/p^k” I, (18) 

which can be defined for each harmonic. When the harmonic is damped Ak < 1. 
When the harmonic is unstable Ak > 1. When the algorithm has zero residual 
damping (ZRD), Ak = 1 for all Fourier harmonics. 

The second source of error that can plague numerical solutions of the continuity 
equation is numerical dispersion. Dispersive errors occur when the phase velocity 
of some harmonics differs from the velocity of the flow V, in Eq. (15). This type 
of error occurs because the spatial and temporal derivatives in Eq. (8) are being 
approximated by finite differences, and hence, the harmonic phase velocity is 
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no longer independent of the harmonic index k. To study the numerical dispersion, 
we define a relative phase error 

where Vi(k) is the numerical phase velocity of harmonic k and V. is the fluid 
velocity. 

FIG. l(a). Initial conditions for the square wave test problem. The velocity is taken to be 
constant in space and time and the boundary conditions on the lO@point mesh are periodic. 
The density square wave of height 2.0 is 20 cells across. The background density is 0.5. The square 
wave should propagate across the grid unchanged. 

b 

(b). The Gibbs phenomenon at the edge of a square wave. The points show the numerical 
values of density for the leading edge of a square wave with transition from 0 to 1. The solid 
line is the continuous finite Fourier expansion which passes through all the grid values. This 
Fourier expression is the smoothest function passing through all the grid values and displays 
overshoots and undershoots. These oscillations, intrinsic to the finite grid representation, can 
force negative density, and hence, must be numerically truncated to faithfully represent a physical 
density. 



FLUX-CORRECTED TRANSPORT 405 

The third type of error observed in solving Eq. (8) on a discrete grid in space 
and time is associated with the Gibbs phenomenon. Errors of this type arise because 
p(x, 0) is known at only N distinct points in space, and hence, only N distinct 
harmonics can contribute. The behavior between the gridpoints, undetermined 
in principle, actually is specified completely once the Fourier spectrum is truncated 
as in Eq. (12). The truncation of the spectrum amounts to saying that the unknown 
behavior of p(x, 0) between the gridpoints should be as “smooth” as possible. 
This means that oscillations between the. (finite number of) gridpoints cannot be 
avoided. 

We will use the squarewave test problem introduced in FCT/I to illustrate the 
x-space effects of our various algorithms and algorithm modifications. Through this 
vehicle, the qualitative effects of damping and dispersion on each individual 
harmonic can be demonstrated as well as the overall effects on a given profile. As 
seen in Fig. l(a), the squarewave test has 100 gridpoints in periodic geometry. A 
square step 20 points wide is propagated at a constant velocity V,, = 1. Initially the 
100 values {pi”} (j = 1,2,..., 100) are as shown. At each cycle of a test calculation 
100 new values {pj”} have to be determined unambiguously. The measure of error 
we will use for these tests is the average absolute error 

100 

A.E. = (l/100) 1 1 pi” - p;nalytic(n &)I. 
i=l 

Figure l(b) demonstrates the Gibbs phenomenon for this problem by plotting 
the continuous function p(x, 0) corresponding to the discrete values of the square- 
wave test problem. The Gibbs oscillations between the gridpoints are clearly seen 
with peak overshoots and undershoots of about 15 %. If left uncorrected, these 
oscillations could make an algorithm negative even in the complete absence of 
harmonic damping or dispersion. The Gibbs oscillations represent an irreducible 
error that cannot be eliminated by improvement of the numerical algorithm 
alone; the grid must be refined as well. 

Figures 2(a) and 2(b) compare leapfrog and Lax-Wendroff algorithms with and 
without added numerical smoothing to show the relative effects of dispersion and 
damping. When v = 0 in both cases, the added damping is zero. The dispersive 
errors dominate and nonpositive transport occurs with large errors. Somewhat 
smaller values of A.E. are achieved by adding a nonphysical damping as shown. 
The large errors from short wavelength dispersion are reduced when these 
improperly calculated harmonics are nonphysically damped to low amplitude. 
Too much damping, however, is generally the bane of numerical algorithms. 
Figure 3(a) shows the donor cell algorithm (flux uncorrected) on the test problem. 
This algorithm, as seen in FCT/I, has second order relative phase errors, but has 
strong first-order numerical damping coefficients. The value of A.E. achieved, 
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CELL NO.- 

i 

LAX-WENDROFF 
800 CYCLES 

40 50 

CELL NO---r 

FIG. 2. Comparison of leapfrog and Lax-Wendroff algorithms on the square wave test. 
(a) The reversible leapfrog /algorithm with and without additional diffusive damping. (b) The 
Lax-Wendroff algorithm with and without additional diffusive damping. The secular short 
wavelength dispersion errors are so bad that added error in the form of nonphysical damping 
actually improves the solution (smaller values of the average absolute error, A.E.) 

0.260, is worse than the standard damped Lax-Wendroff and leapfrog algorithms 
(A.E. = 0.175 and A.E. = 0.245, respectively) and far worse than the reversible 
FCT algorithm shown for comparison in Fig. 3(b). 

In fact, this very broad comparison of these standard treatments with the FCT 
solution graphically illustrates the reason for such interest in FCT algorithms. 
In FCT/I, Figs. 10 and 11, we see the corresponding calculations for the explicit 
and implicit SHASTA algorithms. For these early FCT algorithms, A.E. = 0.057, 
and A.E. = 0.049, respectively. Figure 5 of FCT/II shows a flux-corrected 
explicit donor cell, which has A.E. = 0.064, again a big improvement. 

The remainder of the paper is devoted to determining the relative importance 
of the Gibbs error, amplitude errors, and dispersion errors, and to developing 
modified FCT finite-difference algorithms to eliminate or minimize them. We feel 
that one should try to enforce the following six constraints in constructing these 
finite-difference algorithms. 
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DONOR CELL 
800 CYCLES a 

2 17 

REVERSIBLE FCT 
800 CYCLES 

t 

P’ 

h 

. . . 
A.E. = ,033 

FIG. 3. Comparison of simple donor cell and a reversible FCT algorithm on the square 
wave test. (a) The simple donor cell algorithm is second-order accurate in phase but has a strong 
first-order diffusion and a correspondingly huge value of A.E. (b) The reversible FCT algorithm, 
here with the diffusion coefficient v chosen to minimize phase errors, gives the lowest error of 
any finite-difference algorithm tested to date. A.E. = 0.033 is within 50% of optimum and 8 
times smaller than the donor cell value A.E. = 0.260. 

1. Exact conservation properties of the partial differential equations should 
be mirrored in the finite-difference approximations. Thus, where a conserved 
integral of the system exists, such as total mass or total energy, a corresponding 
numerical integral or sum should be exactly conserved. 

2. The algorithm should ensure stability of all the harmonics in some useful 
range of the parameters Sx and St. If even one harmonic is linearly unstable, having 
an amplification factor greater than unity, the long term accuracy of the algorithm 
is suspect. 

3. The algorithm should be effectively single- or double-step in the temporal 
integration. If an algorithm requires past values of the dependent variables at 
several time levels, the storage requirements of the algorithm can become 
prohibitive when generalized to multidimensional calculations. 
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4. The overall algorithm should be at least second order in regions of the 
problem where the concept of order is related usefully to accuracy. The relative 
phase errors should decrease for long wavelengths at least as (k a~)~, and the 
amplification should generally correspond to a numerical damping coefficient no 
larger than c2 = (v &/SX)~. This requirement is included to provide at least a 
minimal long term accuracy. 

5. The nonnegative property of convective and continuity equations should 
be maintained by the algorithm wherever applicable. This important aspect of 
these equations is generally ignored by most algorithms. Its maintenance by FCT 
algorithms is the major source of their success. Generally speaking, enforcing this 
condition by a conservative linear diffusion operator leads to too much numerical 
diffusion to satisfy requirement 4. 

6. The algorithm should not be built around special (and rather singular) 
properties, such as giving exactly the correct answer when E = u &/6x = 1. The 
algorithm should be generalizable to variable flow velocities and grid spacing, 
and should not be problem-dependent. 

III. AN OPTIMAL ALGORITHM, FOURIER FCT 

The three sorts of numerical error that were identified in Section II should be 
reduced as much as possible in order to generate an optimal algorithm for trans- 
porting a density structure across an Eulerian grid. As we have seen, the Fourier 
transform allows complete control over the phase and amplitude of the harmonic 
components of the density structure being transported when the grid is uniform 
and the velocity field is constant. Therefore, it is not surprising that the Fourier 
transform forms the basis for developing what we might call an optimal algorithm 
for treating the advective continuity equation. We first Fourier transform the 
density field p(x, t), and then advance each of the Fourier harmonics according 
to Eq. (14). These new and accurate harmonics then can be Fourier synthesized 
on the finite-difference grid according to the inverse-Fourier transform formula 
Eq. (12). 

If the quantity V, 6t is an integral-multiple of 6x, the solution is exact. The 
situation is not so good when the distribution is transported a fraction of a cell. 
Because of the truncated Fourier representation, the Gibbs phenomenon is 
operative. Transport over a fraction of a cell brings out the hidden oscillations of 
the function that exist between the specified gridpoints. Thus, although the Fourier 
transform has zero residual damping and zero phase error, the irreducible Gibbs 
phenomenon requires us to enforce nonnegativity on the solution. Our optimal 
algorithm, therefore, combines the good amplitude and phase properties of the 
Fourier transform with the properties of flux-corrected transport to maintain a 
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nonnegative solution. If the Fourier solution is diffused at each cycle, and then 
antidiffused by equal amounts, the antidiffusion being performed implicitly, the 
final solution in the linear sense still has zero residual damping and zero phase error. 
Properly applied, the diffusion will eliminate the nonnegativity caused by the Gibbs 
oscillations and the flux-correction formula applied to the antidiffusive fluxes will 
then insure against new maxima or minima. The effect of the flux-correction 
formula will be to leave a residual diffusion near sharp gradients to remove the 
nonnegative tendencies inherent in any finite-grid representation. The asymptotic 
order of the solution will no longer be infinite as with the pure Fourier transform, 
but the solution itself will be much more reasonable and reliable in the context 
of physically complicated calculations. 

Another way of looking at this algorithm is to consider a given profile of densities 
to be transported and then to ask what is the closest discrete approximation for 
which the Fourier synthesis has no extra maxima or minima between the grid- 
points. If we were to take the desired profile and replace it with the smoothed 
profile (whose Fourier interpolation is monotonic between the gridpoints), the 
Fourier transform would then be a “perfect algorithm” for solving the advective 
equation. No new maxima or minima could be generated, the phase errors and 
amplitude errors would be nonexistent, and the algorithm would be reversible 
so that the original solution could always be reconstructed after many cycles from 
the final solution. 

FOURIER TRANSFORM FCT 
800 CYCLES 

2 v=o.o5 

CELL NO.- 

FIG. 4. Use of the optimal Fourier transform FCT algorithm on the square wave test. With 
Y = $6 after 800 cycles the absolute error A.E. = 0.022, the smallest value obtained with any 
positive algorithm. This represents (roughly) a minimal error since phases and amplitudes are 
treated exactly. The only inaccuracy arises from the finite discrete representation of physically 
continuous functions. 
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Clearly, the smaller the diffusion and antidiffusion in this limited but optimal 
algorithm, consistent with nonnegativity, the better. However, we found by test 
calculations that the final solution and the asymptotic value of A.E. are quite 
insensitive to the level of diffusion and antidiffusion. Figure 4 shows results of 
using the optimal algorithm on the square-wave test problem using v = 0.05. 
The value of A.E. for these calculations is about 0.022, more than 10 times better 
than the standard algorithms previously tested. If flux correction had not been 
used with the Fourier algorithm, the errors would have been oscillatory as the 
solution moved through the grid, going to zero whenever the profile had moved 
an integral number of gridpoints. The mean values of A.E., however, would have 
been about as large as those determined using the optimal algorithm with FCT 
and the solution would have been nonpositive through much of the calculation. 

We certainly do not mean to imply by these test calculations that the Fourier 
transform with FCT is the best algorithm to use in general. Transformation 
techniques are very complicated to use when a nonuniform mesh is considered, 
or when the solution and the equations have strong nonlinearities. A very good 
example would be a simple calculation with spatially varying velocity. While 
our Fourier transforming would still be possible, the interaction of the nonlinear 
terms would certainly confuse the concepts of phase and amplitude significantly. 
Furthermore, and this is the strongest reason for not relying more heavily on 
transform techniques, the expense of performing such transform calculations far 
exceeds the gains that can be realized over good finite-difference algorithms. The 
Fourier approach is basically one of performing an N-point approximation to the 
derivatives, where N is the number of cells in the system. Even using the specialized 
folding techniques of the fast Fourier transform still leaves a very expensive process. 

Rather, this optimal algorithm is included to point up the importance and the 
irreducible nature of the Gibbs phenomenon. Having evaluated the effective 
magnitude of the Gibbs errors, we have a realistic basis for comparison with more 
flexible, inexpensive finite-difference algorithms. 

IV. ZERO RESIDUAL DAMPING ALGORITHMS 

All of the algorithms discussed here are given in Appendix A in FCT form with 
an unspecified diffusion coefficient v and an unspecified antidiffusion coefficient p. 
We now wish to use some of this built-in freedom to improve the accuracy of the 
calculations. Although the analyses of Sections IV and V are linear, the test 
calculations are actually performed using the full FCT algorithm. (“Cheating” 
to take advantage of the linearity would make meaningful comparisons impossible; 
cf. requirement 6 of Section II.) Heavy use of the Appendix here allows a more 
transparent development of the various ideas we wish to test. 
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The algorithms we consider are all basically three-point algorithms in the diffusive 
transport stage. In other words, 

81c’ = a@;+1 + b&O + cjpy-1 (21) 

for diffusive transport. There are three free parameters here. There is also another 
free parameter, the antidiffusion coefficient TV, making a total of four that can be 
chosen to give the resulting algorithms up to four desirable properties. Two of 
the four properties are locked in. One free parameter must be chosen to ensure 
conservation and the second must be chosen to ensure that the advection term 
is accurate. The remaining two parameters are available to establish further 
important properties for the algorithms. 

In this section, we look at algorithms that minimize the residual linear damping 
left by the diffusion and antidiffusion stages. The idea here is that numerical 
diffusion has invalidated many convection calculations. How small can this be 
made, consistent with linear stability of all harmonics? Ideally, 1 A I2 = 1 is sought 
for all allowed values of /3 and E, in which case the term zero residual damping 
(ZRD) is applied. 

1. Shasta (Lax- Wendroff) ZRD 

Equation (A.10) gives the Shasta transfer function for explicit and implicit 
antidiffusion (since our test problem is linear, everything said here and in the 
following for Shasta applies equally well for Lax-Wendroff). The corresponding 
amplification factor squared given in Eq. (A.1 I), consists of the product of two 
terms. If the remaining parameters v and p are properly chosen in Eq. (A.11) 
the dependence on /3 and E can be made to cancel out entirely provided implicit 
antidiffusion (minus signs in exponents) is also used. The value of v is chosen to 
complete the square of the first term in (A.1 1) in curly brackets. That term is then 
in the form of a diffusion term squared and p can be chosen to give exactly the same 
antidiffusion. Thus 

v = i(l - 3) (224 
and 

p = i(l - 3), Wb) 

are the appropriate coefficients for Shasta ZRD. When plugged into Eq. (A. 1 I), 
these yield 

! fi /&IA = [I - .$(I - E2)(1 - cos fl)]” 
[l - $(l - C”)(l - cos P)]” = 

1 
. 

Thus, the choices (22a) and (22b) for v and p give the desired result of zero residual 
damping. 

581/20/4-3 
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FIG. 5. Result of using Shasta ZRD on the square wave test. Implicit antidiffusion is required 
for zero residual damping and Y is chosen to complete the square in the squared amplification 
factor so that two equal implicit antidiffusion steps can exactly cancel the damping. The Shasta 
ZRD result, A.E. = 0.066, is worse than simple FCT algorithm because even though the residual 
damping is zero, the phase properties are much worse than in the simpler Shasta algorithms. 

Figure 5 shows the result of using this algorithm on our square wave test problem. 
The average absolute error is actually worse than in previous cases even though 
there is no linear residual damping. This result is puzzling until one considers the 
effect of Eqs. (22) on the dispersion errors. The original Shasta algorithm used 
v = p = 9, which was found to have very good effects on the phase errors. In 
FCT/I, the form of the relative phase error for long wavelengths was found to 
be R = /?“[-(l/24) + (c2/6)] + 0(p4), when v = (l/8). When v = (l/4)(1 - c2), 
we find now 

&HA = &z[l - e"]p" + o(f14) (24) 

The phase errors are now about twice as large as in the original algorithm even 
though the amplitude errors are reduced. Furthermore, the phase errors now have 
the opposite sign, the import of which can be seen by comparing Fig. 5 and Fig. 2 
of FCT/II. The difference in sign of the relative phase errors causes the two figures 
to look rather like mirror images. The ZRD Shasta algorithm has A.E. = 0.066, 
about 35 % more than the original implicit version, which has A.E. = 0.049. 

Another factor, besides the increased phase errors, is the increased diffusion 
coefficient. We are diffusing and antidiffusing by much more than is actually 
necessary to maintain positivity. Thus, the residual nonlinear errors introduced by 
the flux corrector also can be somewhat larger. The conclusion one draws 
immediately is that good phase properties are more important than ideal amplitude 
properties. This conclusion is reinforced throughout the remainder of the paper. 
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2. Donor Cell ZRD 

A zero residual damping algorithm can also be constructed around implicit 
flux-corrected donor cell (FCT/II). Again, v and p in Eq. (A.15) are chosen to 
eliminate the variations of / A Ihc with /3 and E. The resulting values are 

and 

and they ensure 

for all allowed /I and e. 

v = a(1 - c)” (254 

p = $(l - G), G-1 

lA/Lc= 1 (26) 

Donor cell FCT is another three-point algorithm with four free parameters. 
Since we are imposing the same restrictions as those used above for Shasta, it is 
not surprising that the linear transfer functions for the two cases become identical. 
We find in both cases 

A -A [ 1 - &( 1 + l 2)(1 - cos /3) - i6 sin /3] 
DC - SHA = [l - g(1 - @)(l - cos /!I)] . (27) 

The nonlinear properties, of course, are different for the two cases so the algorithms 
as actually used in a complicated code will differ somewhat. 

3. Phoenical Algorithms (no ZRD) 

The point of phoenical antidiffusion, introduced in FCT/II, is to remove the 
tridiagonal sweep needed in implicit algorithms. The transfer functions (A. 18) and 
(A.22) are such that 1 A lPSH = 1 and 1 A lPDC = 1 identically when E = 0. 
There is no residual damping when there is no flow. This is a third constraint 
v = p, which has been built into the phoenical algorithms so there remains only 
one free parameter, not enough to eliminate /3 and E dependences of 1 A j2. Thus, 
ZRD versions of three-point phoenical algorithms are not generally possible. 
The fourth parameter has to be chosen to minimize amplitude errors, for example, 
at long wavelength. It turns out that 

v = a<1 - 9) (28) 

also minimizes the long wavelength amplitude errors in phoenical Shasta. 

4. Reversible FCT (ZRD) 

Equations (A.26-A.30) in Appendix A, describe a reversible algorithm for 
transport, where v is now a free parameter. Because the algorithm is time sym- 
metric, Eq. (A.28) holds for all E, /I, and v anyway. The algorithm is truly ZRD, 
and v is left free to adjust the phase properties as discussed in the next section. 
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ln summary, zero residual damping (ZRD) versions of FCT algorithms are 
possible, based on several different three-point transport algorithms. Extra velocity- 
dependent diffusion is added to the diffusive transport to put the amplification 
factors in the form of a perfect square of two diffusion steps. The implicit anti- 
diffusion then leaves 1 A j2 = 1 identically. The phoenical algorithms cannot be 
treated in this way, but a reversible ZRD algorithm is possible in which the 
diffusion coefficient v is (as yet) unspecified. Our comparison of the ZRD algorithms 
with other calculations have shown conclusively, however, that phase errors due 
to numerical dispersion are generally more serious than residual amplitude errors 
and the irreducible Gibbs phenomenon combined. 

V. Low PHASE ERROR ALGORITHMS 

It should not be surprising that the phase properties of an algorithm are 
more important than the usual sorts of amplitude errors. Damping generally 
leaves the long wavelengths untouched while removing the very short wavelengths. 
Since these short wavelength harmonics of the solution generally suffer the most 
dispersion anyway, damping at the short wavelengths can sometimes actually 
reduce the overall A.E. in conjunction with dispersion. The phase properties 
are practically more important because phase errors grow secularly when the 
velocity is predominantly in one direction. The difference in position between the 
correct phase front and the numerically computed phase front increases linearly 
in time when the velocity is constant. 

Clearly, the phase errors are not secular when the velocity is oscillatory and the 
distance of oscillatory motion is small compared to spatial wavelengths of interest. 
In such specialized situations, the phase errors increase in one direction for half 
a cycle and then increase in the other for half a cycle. The net integrated phase 
errors go to zero on the average, making amplitude errors (damping) the major 
remaining source of numerical error. In such special situations, the ZRD algorithms 
discussed in the previous section would probably be best. (See Section VI for a 
special case of such motion). 

Here, we consider more or less uniform flows where dispersion is secular, and 
hence, reductions in phase errors should improve the solutions appreciably. 
Appendix A gives expansions of the relative phase error, R = (X - V, at/V, at), 
for long wavelength (small p). Here, X is the distance that a phase front of wave- 
number ,l3 = k 6x moves in one timestep. The exact value is V, St, of course. 
Values of v then can be chosen to reduce the relative phase error from second 
order to fourth order in 8. Since explicit and implicit antidiffusion in the three- 
point diffusive transport algorithms do not effect the phase properties, p then can 
be chosen to minimize the residual long wavelength amplitude errors. In the 
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phoenical and reversible algorithms, other properties have been built in, removing 
this freedom to choose p after the fact. 

1. Shasta Explicit or Implicit (LPE) 

Equation (A. 13) gives the long wavelength expansion of the expression for 
relative phase errors in Shasta. The second-order terms vanish when we choose 

v = &(l - EZ), (29 

and the residual fourth-order term is 

R SHA m B” [- & + & + $1 + 0(/w. (30) 

This should be compared with the corresponding result given in Eq. (24) for the 
zero residual damping algorithm. 

The choice of antidiffusion coefficient p must be such as to ensure stability for 
all harmonics. The most stringent case is for implicit antidiffusion. 
When the corresponding 

p = i(l - 6”) (31) 

is chosen, 1 A &A from Eq. (A.1 1) becomes 

I A l&r* = 1 - 
(G/3)(1 - G)(l - cos p)” 

[l - (l/3)(1 - G)(l - cos @)]>l”’ (32) 

This is the best one can do, as any larger value of p would give unstable positive 
terms of order /I”. 

2. Donor Cell Explicit or Implicit (LPE) 

The same trick can be applied to flux-corrected donor cell. We choose 

v = ; - ; + 4 = ; (1 - E)(l - 26) 

to cancel the j3” term in Eq. (A.17). The remaining relative phase error is 

R DC = p4 [- &j + & + -&] + o@). 

This term of order /I4 is identical to the corresponding Shasta error, Eq. 
Here again, as in the case of zero residual damping, we are applying the 
constraints and the two algorithms become linearly identical. Letting 

p = +(l - 9) 

(34) 

(30). 
same 

(35) 
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as before, gives exactly the same residual amplification factor, Eq. (32), as found 
for the implicit Shasta algorithm. 

Figure 6(a) shows our test calculation performed using these low-phase-error 
three-point transport algorithms. The resulting profile looks qualitatively better 
than the ZRD algorithms and the standard algorithms. The value of the average 
absolute error, A.E. = 0.034, is smaller than the original Shasta algorithm using 
either explicit, implicit, or phoenical antidiffusion. This clearly demonstrates 
that most of the remaining error in finite-difference algorithms, over and above 
the A.E. = 0.022 value from the Gibbs phenomenon, can be tuned out of the 
method by properly structuring the phase properties. In fact, these LPE algorithms 
are within 3 % or so of the very best finite-difference algorithms that have been 
discovered so far. 
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FIG. 6. Comparison of implicit and phoenical low phase error Shasta on the square wave 
teat problem. Using Y = &l - 3) in each case reduces phase errors from second-order to fourth- 
order in k&x, and hence, dispersive ripples are minimized, making the work on the flux corrector 
much easier. (a) Implicit antidiffusion gives almost as good a result as with the reversible FCI 
algorithm but (b) phoenical antidiffusion is not quite as accurate. It does have the advantage of 
being local and not requiring the solution of a tridiagonal system of equations and is more accurate 
than the simplest FCT algorithms. 
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3. Phoenical Shasta (LPE) 

Although phoenical algorithms have only one free parameter left, it can be 
chosen to eliminate the /3” term in Eq. (A.21). The value of v to do this is 

v = 3(1 - G), 

exactly the same value needed to phase-correct the nonphoenical three-point 
algorithms. The residual damping for this LPE modification to phoenical Shasta is 

MI&H = 1 - $ (1 - G)(l - cos fl)” - 7 (1 - ,2)2 (1 - cos /e)>” 

- ; (1 - E2)3 (1 - cos /3)4. 

The remaining fourth-order phase errors become 

R PSH = p4 (- $j + $ - $) + @p)* (38) 

Since the phoenical algorithms are relatively easy to use, being local and non- 
implicit, the apparent advantages of low-phase-error implicit Shasta may be over- 
shadowed by the expense of an implicit calculation and the nonlinear ramifications 
of its nonlocal character. Figure 6(b) uses the LPE phoenical algorithm to perform 
the test calculation. In this case, A.E. = 0.042, the best result obtained using a 
strictly local algorithm. 

4. Phoenical Donor Cell (LPE) 

The phoenical version of LPE donor cell is achieved by setting 

the same value that worked for the explicit and implicit donor cell versions. The 
residual fourth-order term is 

R pDc+34[-~+~-~+2c] +0(p). (40) 

This phoenical version of donor cell is not identical to phoenical Shasta because 
the velocity dependent and independent parts of the algorithm are now treated 
differently so adjustment of the single parameter v no longer can make the two 
algorithms equivalent. 
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The residual damping has the form 

IAgJJc = 1 - 26(1 - 6)(1 - cos fl) - f c(l - E)(l - 2E)2 (1 - cos /3)2 

+ y (1 - e)” (1 - 2E)2 (1 - cos /3)>“. (41) 

This damping is quite a bit larger than the phoenical Shasta LPE values given by 
Eq. (37) because the velocity dependent damping of the basic donor cell algorithm 
is linear rather than quadratic. Therefore, for I - cos p < 1, the linear term 
dominates. Thus, the phoenical Shasta LPE algorithm appears better than the 
corresponding donor cell algorithm. 

5. Reversible FCT (LPE -I- ZRD) 

In the previous section and in Appendix A, a reversible (and hence, ZRD) 
algorithm was introduced which permitted flux-correction. The algorithm achieves 
ZRD through its implicit reversible form and thus the value of v remained free 
to improve the phase properties. The term of order /3” in Eq. (A.30) can be elimi- 
nated by choosing 

The remaining fourth-order term is then 

R REV = 8" [- & + & - &] + @k?. (43) 

Figure 3(b) shows the test problem solved using this algorithm REVFCT. The 
value of the error, A.E. = 0.033, is the smallest value obtained by any practical 
finite-difference algorithm. This error is only 50 % larger than the optimal value 
obtained with Fourier FCT, and the algorithm admits trivial extensions to variable 
velocity and nonuniform spatial grids. 

The REVFCT algorithm can be excellent for many pure linear convection 
problems. Because the transport term as well as the antidiffusion terms is implicit 
in REVFCT, however, the results on the ID hydrodynamic shock problem were 
disappointing. The tridiagonal nonlocal aspect of the algorithm allowed infor- 
mation about the advancing shock front to propagate upstream further than the 
flux correction procedure could cope with (about a cell or two). Diffusive errors 
could not be arranged to cancel the residual dispersion near the shock, and hence, 
the solutions were unacceptable. This objection to implicit treatments of the con- 
vective terms would seem to be quite general even though only a specific instance 
was tested. 
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In summary, low phase error (LPE) versions of FCT algorithms show much more 
promise than their ZRD counterparts for improving the already good FCT 
schemes. The best algorithms tested were implicit Shasta and REVFCT, giving 
an error only 50 % larger than optimal. However, phoenical Shasta LPE is the 
simplest, all-around algorithm. This local easily generalizable algorithm has 
performed very well in many of our complex nonlinear plasma codes and has been 
applied to multidimensional problems and other types of equations. 

VI. NONLINEAR STABILITY 

In Sections III-V, a number of FCT algorithms were defined and analyzed. 
Their linear amplification factors IAl were determined as functions of time-step 
and harmonic wave number through the parameters E and p, respectively. For 

TABLE I 

Ranking of Various Algorithms with Respect to Absolute Error on the Square Wave 
Test Problem 

Algorithms 
Absolute 

error 

Optimal Fourier FCT (implicit) 0.022 

Reversible FCT (LPE) 0.033 
Shastaa (implicit LPE) 0.034 
Donor cell (implicit LPE) 0.034 
Shastaa phoenical (LPE) 0.042 

Shasta” (implicit FCT) 0.049 
Shasta” (phoenical FCT) 0.052 
Shasta” (explicit FCT) 0.057 
Donor cell (explicit FCT) 0.064 

Shasta” (implicit ZRD) 
Donor cell (implicit ZRD) 

0.066 
0.066 

Lax-Wet&off (diffused) 
Leapfrog (diffused) 

0.119 
0.122 

Lax-Wendroff (simple) 0.175 
Leapfrog (simple) 0.245 
Donor cell (simple) 0.260 

” 

0.050 

“Also applies to Lax-Wendroff in constant velocity case, making allowance for intrinsic 
diffusion of Q in Shasta, which is included in Y here. 
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TABLE II 

Positivity and Linear Stability of FCT Algorithms 

Conditions to ensure@ 

Algorithm 

Shasta (explicit Y = &) 

Shasta (implicit Y = &) 

Shasta (phoenical Y = $) 

Shasta (implicit ZRD) 

Shasta (explicit LPE) 

Shasta (implicit LPE) 

Shasta (phoenical LPE) 

Donor cell (explicit Y = 0) 

Donor cell (implicit Y = 0) 

Donor cell (implicit ZRD) 

Donor cell (explicit LPE) 

Donor cell (implicit LPE) 

Donor cell (phoenical LPE) 

Reversible FCT (LPE) 

Fourier FCT 

Positivity (I Q 1 <) Stability (I c 1 <) 

** (&)W 
+* (~)0(1/2l 
4* (&)‘1/2’ 

** - 

fr 1 

3 1 

4 1 

I 1 

1 1 
1 - 

I 1 

I 1 

1 1 
0 - 

0 - 

@ Bounds on E imposed by (i) positivity of the transport stage, and (ii) 
linear stability for all harmonics, assuming uniform velocity. Asterisks 
denote forms of Shasta that are positive for all ( E 1 < 1 when Y is 
uniform (whereupon the transport stage becomes identical with Lax- 
Wendroff). Where entries under (ii) are omitted, the algorithms are 
formally linearly stable for all E (ZRD). 

each algorithm, there exists a critical value C, such that for all j3 and all E < <, 
1 A I2 < 1. The maximum timestep 8t imposed by the requirement of linear stability 
is determined through 5 = V&,,/~X. The values of 5 for the algorithms con- 
sidered in this paper are compiled in Table II. 

For a nonlinear coupled set of fluid equations, however, a guarantee of linear 
stability is not enough. In such a system, energy tends to cascade from large 
scale sizes down to small ones. This effect is normally entirely physical, although 
exaggerated by numerical truncation errors in finite-difference representations. 
If sufficient dissipation (physical or numerical) is present, this energy is removed 
or degraded into heat. But if there is no dissipation, the energy can be aliased into 
the long-wavelength modes that are usually the ones of greatest interest. This 
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process, first described by Phillips [19], manifests itself as a grid-separation 
instability. It is a serious numerical problem in many meterological applications 
[20] and in other situations where very long running times are employed. 

We now show an example of how this instability arises in a problem where 
unstaggered two-step Lax-Wendroff differencing is used. Letting pjo, p:” and pjl 
represent the density on the jth mesh point before transport, after the first step, 
and after the second step, respectively, we have 

p;l” = ; (PY+1 + d-1) - & (d+1C+1 - Pj”U 

St 
Pil = PjO - 2& - (&Vj+1 - &Vi-1). 

Here, following Gerrity [21], we take the velocity in the form 

(44) 

(45) 

vj = v + pp = V[l - (-1)i r], (46) 

where y = P/V is the relative amplitude of a two-cell wiggle imposed on a uniform 
flow field. V and p are both independent of position and time. This oscillation 
in V may be thought of as being induced by a corresponding oscillation in p 
through the nonlinear coupling between the equation propagating velocity and the 
continuity equation, 

Combining Eqs. (44) and (45) and using (46) for Vi , we obtain the following 
result for the case ofj even: 

pi’ = pjy 1 - 3(1 - r”)] 

- (41 - YVWY+2[l - 4 + r>l - P;-z[l + 41 + rm 

where E = (U St/2 8x). (Forj odd, the sign of y is reversed.) Writing 

pjn = 5” exp(&j 8x), 

where 5 is the amplification factor, we find 

1 5 I2 = [I + ~~(1 - y2)(cos 01 - I)]” + ~~(1 - r)” sin2 01, (47) 

with OL = 2k 6x. It is noteworthy that for this differencing scheme, even mesh 
points are connected only to even, and odd points to odd. 

For y = 0, Eq. (47) reduces to the usual linear amplification for Lax-Wendroff 
differencing and 1 5 I < 1 provided c < 1 (the CFL limit). But for arbitrary 
nonvanishing y, Eq. (47) implies instability (1 5 1 > 1) for all modes satisfying 

1>cosol>1- 4lYl 
1 + I y I - E2(l - r3(1 - I Y I) * (48) 



422 BORIS AND BOOK 

For y > 0 (r < 0), values of pj are amplified only on the odd (even) points. The 
maximum amplification, which occurs at 

1 - j y I 1 - E2(1 - r”) 
cos g = 1 + I y 1 1 - E2(1 + / y I)” ’ 

is 

I ii”= 1 - E2(1 + I Y I)(1 - 3 I Y I> ~ 1 + 4v 
1 - ~~(1 - i y I)” (1 - .2)2 ’ I y I < 1. (49) 

For a simulation to exhibit this instability, a relatively quiescent state must be 
followed for a long time. Growth is initially slow, but the grid separation in p 
feeds back into V, so that y actually increases in time. The amplification rate 
5 increases without bound, implying the solutions become singular at some finite 
time (such instabilities are sometimes termed explosive). 

It is a simple matter to flux-correct the scheme of Eqs. (44) and (45), as described 
in FCT/II. The result is to couple the odd and even points both linearly(through 
the diffusion/antidiffusion operation) and nonlinearly (through the flux limiter). 
The former mechanism has a decided inhibiting effect on the instability, while the 
latter completely stabilizes it. 
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FIG. 7. Solution of a nonlinear instability test problem using flux-corrected transport. (a> 
Initial conditions are a sawtooth to excite all harmonics. The velocity field has a large oscillatory 
component. (b) After 800 cycles a nonlinearly stable FCT solution is shown. 
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To illustrate this discussion, we provide a numerical example. Fig. 7 shows a 
ramp profile, chosen for the initial state because all the Fourier harmonics enter 
into the superposition with nonzero amplitudes. This was solved on the same mesh 
employed in the square wave tests using the differencing scheme just discussed. 
The solution was propagated for 800 cycles or until values exceeding lOlo in 
magnitude were obtained. For example, at t = 800 at, amplitudes of both signs 
with magnitudes -8 x lo8 were attained for E = 0.2 and y = 0.6. (The maximum 
amplification factor given by Eq. (49) for these parameters is / [ I2 = 1.058, 
hence 1 [ )*O” m 6 x log. This multiplies 0.19, the initial amplitude of the fastest 
growing mode, yielding a result in agreement with the amplitude observed.) 
In contrast, the FCT solution satisjies 0.86 5 p 5 1.67. 

It should be emphasized that the nonlinear instability is extremely prevalent. 
It does not depend on complete decoupling of the grid into odd and even sets 
of points, as occurs here; this particular differencing scheme was chosen because 
it makes the algebra simpler. Even those schemes like staggered Lax-Wendroff 
etc., which mix odd and even points, do not prevent aliasing of energy from short 
to long scale sizes [20]. The nonlinear properties of the flux-limiting stage of FCT, 
however, do provide a kind of nonlinear numerical dissipation restricted to the 
shortest scale sizes. This appears to eliminate the nonlinear grid-separation 
phenomena. 

VII. CONCLUSIONS 

In this paper, we have considered the problem of reducing the errors in numerical 
solutions of the continuity equation (I). Specifically, the properties of several 
flux-corrected transport algorithms were studied and the algorithms modified 
to reduce undesirable amplitude and phase errors arising from the use of local 
finite-difference approximations to derivatives. Three types of error were isolated: 
amplitude errors (damping or instability), phase errors (dispersion), and intrinsic 
grid representation errors (the Gibbs phenomenon). 

The Gibbs errors arise because only a finite number of values, the density 
function values at the numerical gridpoints, are being used to represent a physically 
continuous profile. The behavior of the profile between the gridpoints is unknown 
and various interpolation forms or splines could be assumed. The simplest of these 
lead to very strong damping in the linear case (donor cell differencing) and non- 
positive solutions in the quadratic cases (e.g., leapfrog or Lax-Wendroff). The 
smoothest representation, provided by Fourier interpolation, also can have non- 
physical oscillations and potential nonpositive behavior between the gridpoints. 
Smoothing off the Gibbs oscillations using FCT (Section III) gave us a measure 
of this intrinsic irreducible error. 

The phase and amplitude errors were adjusted in each of the several finite- 
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difference algorithms considered by changing the strengths and forms of the 
diffusion and antidiffusion coefficients. We looked at the extremes of the problem 
by minimizing phase errors and amplitude errors independently. A truly complete 
optimization would involve considering a whole spectrum of v and p values for 
each algorithm but the original unmodified forms of the FCT algorithms used 
values of p and v roughly midway between the ZRD and LPE limits. Thus, the 
range of possible values is well covered by test cases as well as analysis. Further- 
more, the results suggest strongly that low-phase-error (LPE) algorithms are 
significantly superior to zero residual damping (ZRD) algorithms. Therefore, it is 
unlikely that better versions of the given algorithms exist than the LPE versions 
suggested and tested. Of course, much work remains to generalize this analysis 
rigorously to nonconstant velocity and grid spacing. 

Throughout the paper, we restricted consideration to single step (in time) 
algorithms satisfying the conditions laid out in Section II. The algorithms con- 
sidered were all linearly stable and conservative before, during, and after the 
application of flux correction. The diffusion and antidiffusion coefficients were 
chosen so the resultant algorithms would be linearly second-order, while FCT 
guaranteed positivity. All except the optimal Fourier FCT are generalizable to 
variable grid/variable velocity flow fields. We do not claim to have exhausted 
the list of possible or interesting algorithms, but have surveyed the field rather 
thoroughly. There do exist many double step and nonlocal algorithms that have 
been used and tested thoroughly in the past, but by and large these do not lend 
themselves particularly well to flux correction (cf. the discussion of leapfrog and 
two-step Lax-Wendroff in FCT/II) and hence, do not guarantee positivity. 

We found that three algorithms looked particularly good. All are low-phase- 
error (LPE) algorithms. For purely convective problems reversible FCT LPE 
and implicit Shasta LPE were by far the best generalizable finite-difference 
algorithms. Their errors, given in Table I, are within 50 % of optimal on our test 
problem. Due to its nonlocal implicit nature, however, the REVFCT algorithm 
was found to do poorly on nonlinear shock problems and to cost a little more to run. 

The third algorithm, phoenical Shasta LPE, overcomes both these objections 
admirably, at the price of a little accuracy. We can see from Table I, however, 
that phoenical Shasta LPE is still within a factor of two of optimal and five or 
six times more accurate than standard flux-uncorrected algorithms. Our results 
enable us to draw the following conclusions: 

1. One of the three types of error, the Gibbs phenomenon, is intrinsic to 
the finite discrete spatial resolution. This error can give negative densities so some 
damping is required, at least initially, of all algorithms to avoid this (Section II). 

2. The effective size of this minimal error was measured using a Fourier 
FCT algorithm with perfect phase and amplitude properties (Section III). Several 
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useable low phase error (LPE) algorithms were devised using FCT, which approach 
this minimal error within a factor of two (Section IV). 

3. Modest numerical dispersion is generally a more serious source of error 
than modest harmonic damping errors (Section IV and V). The reason is that phase 
differences between harmonics increase secularly in time, while amplitude errors 
are self-eliminating. 

4. The minimal error due to the Gibbs phenomenon can be approached 
quite closely by LPE FCT algorithms such as phoenical Shasta (Section V). 
Reducing the dispersion to fourth order appears to be quite adequate even with 
some residual amplitude damping. 

5. The best of the FCT algorithms are about on order of magnitude better 
than some of the ordinary continuity-equation algorithms (Table I). Even the 
original Shasta algorithm and some of the variations are five or six times better 
than the old methods (Sections IV and V). Zero residual damping (ZRD) algorithms 
were actually somewhat worse in the test problem than the original Shasta explicit 
FCT (Section IV). Of course, in oscillatory flows, the phase errors are not generally 
secular so ZRD algorithms may be most valuable in such cases. 

6. FCT seems to strongly repress or eliminate the nonlinear grid-separation 
instabilities that can arise when the flow field can have an oscillatory component 
(Section VI). The strongly nonlinear effect of the flux correction stage of the 
algorithms shuts off the nonlinear growth when it reaches a large enough amplitude 
to just form new nonphysical maxima and minima in the solution. 

APPENDIX A: NUMERICAL ANALYSIS 

Several different algorithms are considered and compared in the paper. This 
Appendix lists the various numerical formulae used for this purpose. We assume 
a constant velocity in the x direction and consider the one-dimensional continuity 
equation 

ap=-yap at 0 ax 3 

on a fixed uniform grid with spacing 6x. The timestep is St and we define 

E = v, &/6x, 

61) 

64.2) 

the fraction of a cell crossed by the flow in one timestep. 
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Equation (A.l) is linear, so we can Fourier analyze and examine the evolution 
of a single harmonic. The initial condition is 

pjO = p0eikj8m, (A.3) 

where k is the wavenumber of the particular harmonic being considered. On a 
finite discrete mesh (periodic boundary conditions) 

k = (2nm/L) (m = 0, I,..., N), (A.4) 

where L = N 6x. Thus, the quantity 

j3 = k 6x, (A.3 

which will appear throughout our analysis, ranges from 0 to 277 in value. 
We are concerned with the following algorithms: (1) Shasta with explicit 

(implicit) antidiffusion; (2) donor cell with explicit (implicit) antidiffusion; (3) 
phoenical Shasta; (4) phoenical donor cell, and (5) a new algorithm REVFCT, 
a linearly reversible continuity equation algorithm. The three types of anti- 
diffusion (explicit, implicit, and phoenical) are described in the proceeding paper 
of this series, FCT/II. 

The present paper ignores leapfrog algorithms and does not explicitly consider 
Lax-Wendroff algorithms. Previously published tests of flux-corrected leapfrog 
show no particular advantages over Shasta or Lax-Wendroff, and there are minor 
difficulties in applying FCT to leapfrog. In the linear constant-velocity test problem 
used as the focus for most of this paper, the results for the Shasta transport 
algorithm apply equally well for Lax-Wendroff. (For constant velocity, Shasta 
is just Lax-Wendroff with an added three-point diffusion with nondimensional 
coefficient 3). 

The transfer function A relates (pi”} to the density function {pjl) one timestep 
later, where for brevity the dependence on wavenumber k is suppressed. Thus 

t’jl = du.coPj”; 64.6) 

here, the subscript on A will indicate the algorithm. The amplification factor for 
each algorithm is just 1 A lALGo , the magnitude of the transfer function. 

IAl ALGO = [Re2(p11~) + Im2Wpo>11’z. (A.7) 

The angle of A in the complex plane can be related to the phase properties 
of the algorithm for the harmonic being considered. In a time at, the phase front 
for any harmonic should propagate a distance x = V, 22. In actuality, each 
harmonic propagates a different distance x ALGO( The different phase properties 
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of each harmonic constitute the dispersion of the algorithm. The phase propagation 
distance is calculated from the inverse trigonometric relation of 

The explicit dependence on k of XALGo in the following will also be dropped. 
Finally, for each algorithm and harmonic we can define a relative phase error 

R ALGo , defined to be 

R ALGO = (XALGO - v&J sty V” St. (A.9) 

This will usually be expanded as a power series in /3. 

1. Shasta Explicit or Implicit Algorithm (SHA) 

A SHA = [l - (2~ + l 2)(1 - cos /3) - k sin /3][1 f 2~(1 - cos @]*I. (A.lO) 

The upper (lower) sign gives the explicit (implicit) form of A,,, . Here, Y and Al. 
are, respectively, the nondimensional diffusion, and the antidiffusion coefficients. 
The p and v do not need to be equal in general, but p should always be small enough 
SO that 1 A IALqo < 1 for all k. 

For Shasta (as for most other algorithms) the phase properties are unaffected 
by the type of antidiffusion, even though the amplification factors do depend on 
whether explicit or implicit forms are used. 

IAl tHA = (1 - 4v(l - cos /3) + [2v + c2)2 - G](l - cos /?)“) 

x (1 III 2p(l - cos /3)}&2, (A.ll) 

Equation (20) of FCT/I is just a special case of (A. 11) with v = TV = Q and using 
the upper (plus) sign. 

The phase properties are derived from 

tan kXsHA = 
E sin p 

[l - (2v + $)(l - cos /!I)] ’ 

which has the following relative phase error for small /3 

(A.12) 

RsHA m p” [v - 5 + $1 + /3” [A - $ + $ + v2 - $1 + Ocs”). (A.13) 

581/z"/4-4 



428 BORIS AND BOOK 

2. Donor Cell Explicit or Implicit (DC) 

A DC = [l - (2v f 1 E I)(1 - COS p) - ie sin /?][l f 2~(1 - ~0s /3)]*1, (A.14) 

where the upper signs again give explicitly antidiffused donor cell. Then, taking 
E > 0 (for the general case, E is replaced by I E I), we find 

I A I& = (1 - (4~ + 2~ - 2@)(1 - cos ,8) + [(2v + l )2 - l ](l - cos /3)2} 

x { 1 f 2/L(l - cos j?)}““. (A.15) 

tan k.XDc = 
E sin /3 

[l - (2V + E)(l - cos j?)] * (A.16) 

+f+ VE - YE2 1 + O(p), (A.17) 

for long wavelengths (small /l). 

3. Phoenical Shasta (PSH) 

ApsH = [l - ~~(1 cosj?) -22vra(l -cos/~)~] -i~sinp[l +2v(l -cosfi)]. (A.19 

In the phoenical algorithms, we are adding the physical constraint that 1 ApsH I = 1 

for all harmonics p (i.e., k&v) when E = 0. This constraint removes one degree 
of freedom and we must set p = v to ensure this useful property. 

I A 1;s~ = { 1 - ~~(1 - cos j?) - 2v@(1 - cos ,Q)“}” - $(I - cos /3)2 

x [l + 2v(l - cm p)]” + 2E2(1 - cos /9)[1 + 2v(l - cos /3)]“. 
(A.19) 

tan kxpsH = 
E sin p[ 1 + 2v(l - cos /3)] 

[ 1 - G(1 - cos P) - 2vr2(1 - cos /3)2] * 
(A.20) 

R p,qH = j3” [v - ; + f] + p4 [A - f + & - $1 + O(fi)6. (A.21) 

To this order, Eq. (A.21) differs from the corresponding Eq. (A.13) only in the 
absence of a term v2 multiplying /3”; a similar relationship holds for donor cell 
(Eqs. (A.17) and (A.25) below). 
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4. Phoenical Donor Cell (PDC) 

ApDC = [l - ~(1 - cos /I) - 2~(1 - cos /3)z] - ie sin /I[1 + 2v(l - cos j3)]. 
(A.22) 

I A Ihx = (1 - E(l - cos fl) - 2VE(l - cos j3)2)2 

+ [2c2(1 - cos fl) - ~~(1 - cos /3)2][1 + 2v(l - cos ,@I”. (A.23) 

tan kxpDC = 
E sin /?[l + 2v(l - cos j3)] 

[ 1 - E(l - cos B) - 2ve(l - cos P)] * 
(A.24) 

- -f + $1 + 0(P). (A.25) 

5. Reversible Flux-Corrected Transport (REV) 

An implicit algorithm has been introduced in this paper with both the zero 
residual damping (ZRD) and low phase errors (LPE) properties. 

Linear reversibility again requires p = v. The finite-difference form relating 
p,l to pjo is 

fjl + ; (d+1 - p:-3 + 4p;+1 - 2pj’ + pf-3 

= pjo - ; (p;+l - Pf-11 + v(d+1 - 2Pj0 + Pjo-3. (A.26) 

For v = 0, (A.26) reduces to the ordinary Euler-modified scheme. Clearly, this is 
implicit for {pjl}, requiring a full tridiagonal solution. Generalizations to variable 
grid and velocity are obvious but the implicit nature of the algorithm is a drawback. 

A 
[l - i(E/2)sin j3 - 2v(l - cos j3)] 

REV = [l + i(e/2)sin /I - 2v(l - cos fl)] ’ 
(A.27) 

It follows immediately from (A.27) that 

I A I~BV = 1, (A.28) 

for all /3, E, and v. The condition satisfied by the phoenical algorithm, A = 1 
when E = 0, is automatically satisfied; hence, the form of the algorithm itself 
assures the zero residual damping property. 

The phase properties are derived from 

(e/2) sin j? 
tan (*kxRE”) = 11 - 24 _ cos /q 3 (A.29) 
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which gives 

R RE” = 8” [v - ; - $1 

+ P” [&j - f + v2 + 6 - q + $1 + o(p). (A.30) 
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